随着锂金属电池(LMBs)技术的发展,高能量密度电池的需求日益增加,LMBs因其有望实现超过500 Wh kg
的能量密度而引起了科学家的广泛关注。其中,电极/电解质界面在二次电池中的质量传输和能量转换效率起着关键作用。然而,由于锂金属负极(LMA)相关的挑战,如锂枝晶的形成和低库仑效率(CE),这一领域的研究面临着巨大的困难。尤其是在界面处的锂离子(Li+)溶剂化结构与电场的相互作用研究方面,任旧存在诸多未解之谜。未解决这样一些问题,各国纷纷启动了战略研发计划,以推动LMBs的商业化应用。例如,美国的Battery500联盟和中国的五年计划等。然而,尽管已有许多研究通过调节Li
溶剂化结构来试图优化固体电解质界面(SEI)的形成,如通过溶剂-盐电解质、弱溶剂化电解质和高熵电解质等手段增加接触离子对(CIPs)和聚集体(AGGs)的比例,这些努力在实际应用中仍面临着诸多挑战。电解质设计的目标是稳定电极/电解质界面,来提升锂镀层/剥离的库仑效率,但在实际应用中,相似的溶剂化化学在不同条件下仍然会表现出不同的电化学性能。鉴于此,浙江大学范修林团队提出了一种介电策略,旨在通过调控界面电场下的Li
溶剂化物行为,解决LMA有关问题。具体而言,这一策略通过优化介电环境,保持阳离子-阴离子对在界面处的高振荡幅度,从而促进阴离子衍生的SEI形成,并减少电解质在电极/电解质界面的持续消耗。最终,这一研究成功地在工业锂金属软包电池中实现了PFB电解质的应用,并且实现了500 Wh kg−1以上单位体积内的包含的能量的电池设计,展示了介电调控策略在高能量LMBs中的巨大潜力。
科学亮点】1. 实验首次在锂金属电池中研究了阳离子溶剂化在电极-电解质界面的行为,揭示了外部和分子内电场对锂金属阳极适应Li
溶剂化物的协同效应。通过对带电界面上的阳离子-阴离子对的周期性振荡分布进行观察,发现低振荡幅度会加剧电解质的分解并增加表面阻抗。
2. 实验通过提出一种新的介电策略,有效保持了界面上的阳离子-阴离子配位的高振荡幅度。这一策略通过调节界面电场,防止电解质过度分解,并促进形成稳定的固态电解质界面(SEI),来提升了电池的库仑效率和单位体积内的包含的能量。
3. 实验成功在安时(Ah)级别上实现了一种能量密度为500 Wh kg
的锂金属软包电池,验证了该介电策略在实际应用中的有效性。此研究为锂金属电池技术的发展提供了新的思路和方向。
科学结论】本文的研究揭示了阳离子溶剂化在电极-电解质界面上的复杂行为及其对电池性能的关键影响。作者发现,虽然阳离子溶剂化在体相溶液中已被广泛研究,但在电极-电解质界面上的机制仍不完全明确。研究表明,界面处的阳离子-阴离子对呈周期性振荡分布,且低振荡幅度会加剧电解质分解并增加表面阻抗。未解决这样一些问题,作者提出了一种介电策略,通过在界面上保持高振荡幅度来稳定阳离子-阴离子配位,从而有实际效果的减少电解质消耗,提升电池性能。通过应用这一策略,作者成功实现了使用超低量电解质的锂金属软包电池,单位体积内的包含的能量达到500 Wh kg
。这一发现不仅优化了电池界面的电化学性能,也为电池技术的逐步发展提供了新的方向。本文的研究为如何调控固/液界面的电化学行为提供了宝贵的见解,对未来高能量密度电池的设计与应用具备极其重大的指导意义。参考文献:Zhang, S., Li, R., Deng, T. et al. Oscillatory solvation chemistry for a 500 Wh kg
曾任职赛默飞和安捷伦,Steve Becker入职腾讯跟投的基因组学公司
精细化维护,个性化支持——HORIBA“服务万里行”·中科院长春应化所巡检圆满完成
成功晋级第十三届中国创新创业大赛,暨2024年“天开之星”天津市创新创业大赛企业组决赛
创新引领 YOUNG帆起航——仪器信息网25周年 我们不一YOUNG!